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Abstract: Glycans decorate over 95% of the mammalian cell surface in the form of glycolipids and

glycoproteins. Several toxins and pathogens bind to these glycans to enter the cells. Understanding the

fundamentals of the complex interplay between microbial pathogens and their glycan receptors at the

molecular level could lead to the development of novel therapeutics and diagnostics. Using Shiga toxin

and influenza virus as examples, we describe the complex biological interface between host glycans and

these infectious agents, and recent strategies to develop glycan-based high-affinity ligands. These

molecules are expected to ultimately be incorporated into diagnostics and therapeutics, and can be used

as probes to study important biological processes. Additionally, by focusing on the specific glycans that

microbial pathogens target, we can begin to decipher the ‘‘glycocode’’ and how these glycans parti-

cipate in normal and aberrant cellular communication. & 2010 Wiley Periodicals, Inc. Med Res Rev, 30, No. 2,

327–393, 2010
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1. INTRODUCTION

Understanding the ‘‘molecular’’ language used by cells to communicate with each other could
lead to strategies to ameliorate a number of diseases processes.1 The three major classes of
biopolymers controlling these communication processes are nucleic acids, proteins, and car-
bohydrates (or glycans). The 20th century laid the groundwork for understanding nucleic acids
and proteins, while glycans remain a challenge for the 21st century. Of these classes of mac-
romolecules, glycans are ubiquitous by virtue of their presence at the front end of the com-
munication signal line, that is, on the surface of cells. Cell-surface glycans, in conjunction with
exogenous soluble glycans present in the extracellular matrix, have developed an elaborate
‘‘glycocode’’ to control several biological functions, such as cell adhesion, proliferation,
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aberrant growth, and organ differentiation.2–5 The multitude of functions controlled by gly-
cans and the impact of miscommunication requires exquisite control, and glycans have de-
veloped a complex language to avoid ambiguity and limit undesired biological outcomes.3,6

Like nucleic acids and proteins, glycans use a set of small molecules, specifically mono-
saccharides, as the ‘‘alphabet’’ to develop their language or the ‘‘glycocode.’’ While nucleic
acids and amino acids are strung together to produce a linear language that can be directly
read, glycan linkage can be nonlinear. The number of permutations and combinations that a
few monosaccharide units can achieve far outnumber those afforded by amino acids or
nucleotides. For example, two discrete, six carbon monosaccharide units can be linked to-
gether in 11 different ways, each with its own unique physicochemical and biological func-
tion.7 By comparison, only one dinucleotide and four dipeptides can be realized from two
nucleotides and two amino acids, respectively. In addition to positional isomerism, glycan
conformation, density and hydrogen bonding modulate activity of glycans. Several reports
have demonstrated that, in addition to the primary structure, density and presentation of
glycans can affect binding to its cognate receptor and downstream signaling processes of the
glycan.8–11 The combination of two languages, for example, conjugation of an oligosaccharide
to specific proteins, leads to a new dialect and further complexity.12–16 Despite the enormous
complexity, this sophisticated language modulates essential biological functions with clock-
work-like precision most of the time. For example, depending on the need, basic fibroblast
growth factor, a protein involved in the inflammation and remodeling of the extracellular
matrix, interacts with different components of heparan sulfate to promote proliferation or
inhibition of cellular growth.17–19 However, aberrant glycosylation of glycolipids or glyco-
proteins leads to disease.20 Clearly, understanding the language of glycans is important to the
development of strategies to reverse the irregular or diseased biological state.

2. METHODS FOR STUDYING GLYCAN BIOLOGY

Studies delineating the fundamental physicochemical properties of glycans and their in vitro
interactions with their cognate receptors allow us to understand how protein–glycan inter-
actions occur at the molecular level. Some of the tools used to study these interactions are
glycan/lectin microarrays21–33 and metabolic engineering.34–40 Glycan and lectin microarrays
are high throughput screening technologies that have been widely used to profile the binding
affinities of a number of analytes leading to undiscovered specificities.22,41–46 Metabolic en-
gineering, which involves the incorporation of unnatural sugars on the cell surface, has
shown considerable promise in furthering our understanding of the role of cell-surface gly-
cans. In fact, the visualization of glycans on the cell surface is now possible using these novel
technologies. Excellent reviews have been published on the development and application of
these novel tools.24,29,31,35,39,42,47–51

In addition to these tools, toxins and pathogens are also excellent probes to study the
language of glycans. First, toxins/pathogens understand and exploit the specific glycan
structures that mammalian cells use to decorate their surfaces (Table I). For example, several
toxins and viruses use N-acetylneuraminic acids to gain entry into the cell, but use different
mechanisms to obtain tissue specificity. Influenza initially binds to terminal N-acetylneur-
aminic acids present on glycoproteins (Table I, B] 6,7,8) and glycolipids to gain entry,52–56

while botulinum toxin initially binds to gangliosides (Table I, A] 8,9,10) present on nerve
cells until it finds a specific high-affinity protein receptor to enter the cell.57–59 Second, toxins/
pathogens are mutating constantly, leading to a large pool of mutants that possess varying
degrees of virulence and glycan-binding affinities. For example, emerging variants of Shiga
toxins (Stxs) differ from the parent strains in a few amino acids and seem to prefer different
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glycans for binding.8,60 More importantly, these emerging variants differ significantly in their
ability to cause disease, as evidenced in animal model60,61 and epidemiological studies.62

Thus, infectious agents are excellent probes to understand the molecular basis of glycan–-
protein specificity and to correlate in vitro glycan binding to in vivo biological function, the
latter being one of the significant research gaps in the field of glycoscience.

3. FACTORS THAT INFLUENCE RECEPTOR RECOGNITION

When compared to genomics or proteomics, glycan recognition is considerably more com-
plicated. The interaction of a toxin/pathogen with its cognate glycan receptor is dependent on
several factors. We discuss three factors that play an important role in determining whether a
specific glycan will serve as a receptor for a microbial pathogen: primary structure of the
glycan, glycan presentation, and density of the glycan on the cell surface.

A. Primary Structure

The primary structure of the glycan remains the most important factor in determining pa-
thogen/host interactions. It is clear from Table I that, in addition to broad glycan pre-
ferences, different toxins or pathogens can exhibit binding to the same glycan, leading to the
incorrect assumption of lack of specificity. While a particular glycan is capable of binding
different microbes, the mechanisms can be different and can be exploited to achieve requisite
specificity. For example, the common receptor for Streptococcus suis (Table I, C] 1) and P
fimbriated Escherichia coli (Table I, C] 3) is the naturally occurring Gal(a1–4)Gal dis-
accharide. In pioneering studies, it was shown that these two distinct pathogens bind to
different parts of the same disaccharide. Briefly, a panel of compounds related to the
Gal(a1–4)Gal epitope, such as 40 deoxy Gal(a1–4)Gal, 400 deoxy Gal (a1–4)Gal, 30 deoxy
Gal(a1–4)Gal, were chemically synthesized and evaluated for binding using a hemaggluti-
nation inhibition assay.63 The essential hydroxyls for binding to two groups of S. suis were
the 40 OH, 60 OH, 2 OH, and 3 OH, whereas P fimbriated E. coli binds to a cluster of five
hydroxyls (6 OH, 20 OH, 30 OH, 40 OH, and 60 OH) on the opposite side (Fig. 1). Thus, S. suis
and P fimbriated E. coli bind to different parts of the same disaccharide receptor. Within a
toxin/pathogen family, the binding preferences of different variants can be different with the
internal sugars exerting their influence in the recognition process (discussed later in the Shiga
and influenza subsections).

It is worth mentioning that the field of glycan–toxin/pathogen interactions is still in its
infancy and elaborate structure activity relationship studies, such as the one described above,

OH

O

HO
OH

OH

O

O

O

HO
OH

OH

Figure 1. Gal (a1,4). Gal residue that binds to Streptococcus suis and P. fimbriated E. coli. Hydroxyl functionalities that bind
exclusively to S. suis and P. fimbriated E. coli are shaded in medium gray circle and dark gray rectangles, respectively. Hydroxyls

critical to both pathogens are indicated using open circles.

338 K KULKARNI,WEISS, AND IYER

Medicinal Research Reviews DOI 10.1002/med



are limited. The earliest studies assessed binding to monosaccharides and were typically
limited to qualitative analysis. However, it is increasingly being recognized that most glycan-
binding proteins recognize structures that are more complex than a monosaccharide, and
quantitative analyses are now emerging.

Studies on protein binding to more complex glycans have been limited, primarily because
the synthesis of ultra pure synthetic glycans has been time consuming and labor intensive in
the past. However, novel methodologies, such as solid phase,64–79 1-pot,80–93 and enzyme-
based technologies94–110 have significantly alleviated the problem of rapid production of
glycans significantly. Thus, Table I represents only a small subset of the vast number of
potential interactions between infectious agents and glycans. As the field evolves, it is an-
ticipated that broad preferences will be narrowed down to specific binding motifs, which can
be used to develop lead compounds for glycan-based therapeutics and diagnostics.

B. Glycan Density

It is well known that protein–monosaccharide interactions are generally rather weak, typi-
cally in the millimolar range. High-affinity binding is achieved through multivalent inter-
actions. It is imperative to note that just increasing the glycan density is not sufficient to
obtain the desired signaling as the protein density on the pathogen; the number of binding
sites and distance between binding sites on the protein have been shown to significantly affect
binding affinities.11,111,112 Toxins and pathogens use different strategies to achieve multi-
valency. For example, the tip of each Type 1 pilus of E. coli possesses a single mannose-
binding protein (Table I, C] 5). Multiple receptors must be engaged to mediate stable
bacterial attachment; however, the bacteria elaborate hundreds of long flexible pili, which
can accommodate sparse or uneven receptor distribution on the host cell (Fig. 2A).
In contrast, the glycan-binding proteins of viruses are densely packed. Influenza virus
attachment is mediated by the hemagglutinin (HA) trimer (Fig. 2B, shown in yellow),
although tetrameric neuraminidase (NA) (Fig. 2B, shown in red) may also participate in the
attachment. Each HA protein is a trimer, capable of engaging three molecules of sialic acid,
and the surface of each virion contains many copies of the HA protein. The small size and
relatively inflexible nature of the virion may demand certain patterns of receptor distribution;
however, this has yet to be investigated. Receptor density may have the strongest influence on
susceptibility to bacterial toxins. Shiga toxin (Stx) attachment is mediated by a pentamer of
five identical protein subunits, and densely packed receptor distribution is critical for bind-
ing. (Fig. 2C). Overall, the structure of the glycan and the density play an important role in
the recognition event. In some cases, such as Stxs, densely packed receptors are needed for
binding, while in other cases, such as E. coli, sparsely populated glycans can still result in
infection.

C. Glycan Presentation

Recognition of the glycan can also be influenced by how it is displayed on the cell surface.
Unlike most proteins, glycans adopt several thermodynamically stable conformations, and
the ability of a glycan to adopt the conformation needed for receptor recognition can be
influenced by adjacent residues that play a limited role in the recognition process. In several
instances, the correct glycan conformation is induced when the protein interacts with the
glycan.113–115 Tethering glycans to a surface can limit the number of conformations, and it
has been well established that glycans-on-a-surface exhibit different binding affinities toward
the same protein than free glycans-in-solution. Thus, binding studies using ELISA and SPR
techniques, where one of the components is tethered to the surface, may differ from ITC or
NMR techniques, where both components are in solution.116,117 The advantages and
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shortcomings of some of the techniques are presented in Table II. Also, binding is influenced
by the spacers that connect the glycans to the surface; shorter spacers can result in limited
conformations compared to longer spacers. However, if the spacers are too long, it may
result in decreased binding due to loss in multivalency. Overall, improperly presented glycans
can fail to bind to the protein and give false negatives, and this could have implications in the
interpretation of glycan microarray results.

We describe the interaction of two well-studied systems, Stx and influenza virus, with
host glycans, and efforts to inhibit the infection process in the following sections.

4. SHIGA TOXIN

Stx is the major virulence factor of several Gram negative bacteria, including E. coli and Shigella
dysenteriae.118 Stx-related food-borne illness affects over 70,000 people in the United States
annually, with children under the age of five and the elderly being the most susceptible.118–120

Contamination with Stx-producing E. coli O157:H7 is a constant threat to our food, drinking
water, and recreational waters. The symptoms include severe abdominal cramping, watery and
bloody diarrhea. Spontaneous resolution is observed in 85–90% of all cases. However, 10–15%
of patients are severely affected and develop hemolytic uremic syndrome (HUS), kidney failure,
and possibly death. Antibiotic treatment is contraindicated because it can promote progression
to severe disease by increasing Stx production, and treatment is mainly supportive.121

A.  Pilus-Mediated Bacterial Attachment 

C.  Shiga Toxin Attachment

B.  Influenza Virus Attachment

E.coli 

90-120 nm

2 µm

~ 10 nm 

Figure 2. Influence of glycan distribution on binding of toxins, viruses, and pathogens. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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Table II. Salient Features of Different Biophysical Techniques for Quantitative Binding Analysis

Advantages Other considerations

Glycans on surface

ELISA (i) High throughput

screening

(i) Results dependent on glycan

spacer, density, and architecture

(ii) Dose response studies give

apparent Kd’s

(ii) Requires labeled detection

reagents (antibodies)

(iii) Incubation time studies identify

highest affinity ligands for

dynamic systems11

(iv) Limited amounts of glycan and

protein required

SPR (i) Newer instruments are capable

of high throughput screening

(i) Results dependent on glycan

spacer, density, and architecture

(ii) Kinetic data such as ON/OFF

rates are obtained, which

are highly relevant to

in vivo biological

function

(ii) Algorithms for analysis only

developed for bivalent systems,

only apparent Kd can be obtained

for multivalent–multivalent

interactions

(iii) Label-free technique

(iv) Glycan on chip can assess

multivalent interactions; protein

on chip can assess monovalent

interactions

(v) Limited amounts of glycan and

protein are required

(vi) Use of the appropriate (such as a

lipid bilayer) sensor chip can

mimic biological system

Glycans in solution

Saturation Transfer

Difference (STD)

NMR

Spectroscopy

(i) Identification of part of the

glycan that binds to the

protein

(i) Multivalent systems

are more difficult to

analyze

(ii) Competition experiments

between two glycans will identify

the higher affinity glycan

(ii) No information of the binding

site of the protein unless the

protein is labeled

(iii) Quantitative Kd for

nonmultivalent systems

(iii) Large amounts of analytes are

required

(iv) Label-free technique (iv) Not a true representation of the

interactions at the cell surface

ITC (i) Thermodynamic data are

obtained, which are highly

relevant to in vivo biological

function, especially when glycans

in solution are being studied

(ii) Label-free technique

(i) Multivalent systems are more

difficult to analyze

(ii) Large amounts of analytes are

required

(iii) Not a true representation of the

interactions at the cell surface,

that is, glycans-on-a-solid surface

cannot be assayed using ITC, as

both components need to be

solution
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Among the Stx producing E. coli strains, O157:H7 is the predominant serotype found in the
United States. Strains of E. coli O157:H7 can produce Stx1, Stx2, or both, but severe disease
is most commonly associated with strains that produce the more potent toxin variant, Stx2.
While most common E. coli serotypes do not produce Stx, Stxs are encoded on lysogenic
bacteriophage, and can be transmitted to other serotypes of E. coli and even other enteric
bacterial species. Indeed, it has been shown that other strains, such as O26, O146, O103, and
O117, can produce Stx, as can commensal strains.122 Because several serotypes besides
O157:H7 can produce Stx, the CDC recommends testing clinical isolates for Stx production
instead of screening for the presence of the O157:H7 serotype.123

Stx belongs to the AB5 family of toxins that include cholera toxin (Table I, A] 1), heat
labile toxin (Table I, A] 2), pertussis toxin (Table I, A] 3), and subtilase toxin (Table I A] 4).
The five B subunits in Stx are identical. The A subunit possesses the toxic activity and cleaves
a single adenine residue from the 28S ribosomal RNA molecule, thereby inactivating the
ribosome and halting protein synthesis. It is very interesting that a similar N-glycosidase
activity is observed with the plant toxin ricin, another biothreat agent. However, ricin binds
to galactose or galactosamine monosaccharides as a receptor, whereas Stx requires
disaccharides or trisaccharides to bind effectively.124 Also, ricin appears to target the liver,
whereas Stx causes HUS and kidney failure. Thus, although both toxins affect the ribosome,
the different receptor preferences lead to different pathologies.

A. Clustering of Glycans Dramatically Increases the Affinity of Shiga Toxins

The structure of Stxs are shown in Figure 3. The five identical B, or binding subunits of Stx,
forms a pentamer with superficial pentaradial symmetry, similar to the shape of a starfish.
The A subunit sits in the pocket formed at the center of the B pentamer.125 The details of the
molecular basis of receptor recognition have been most fully developed for Stx1. Each B
subunit of Stx1 has three binding sites, of which site 2 has been shown to be the most
important (Fig. 3B).126,127 Multiple studies have demonstrated that the functional receptor
for Stx1 is a neutral glycolipid, globotriaosylceramide (Gb3), shown in Figure 4A,128–131 and
Stx binds to the glycan head group of Gb3, also known as the Pk trisaccharide. A single
trisaccharide binds with millimolar affinity to Stx, which is typical of most glycan–protein
interactions. However, when multiple copies of the receptor are arrayed on a surface, similar
to how they are presented on the cell membrane, the toxin is able to engage multiple receptors
and the binding affinity increases dramatically (Table III).127

Several synthetic analogues comprising of the Pk trisaccharide linked to various scaffolds
have been synthesized and assayed for binding with Stxs. The general theme of all these
synthetic molecules is that increased affinity is achieved by increasing the number of glycans
displayed to maximize accessibility to the toxin-binding sites132–147 (Table III). A single Pk
trisaccharide exhibits millimolar-binding affinity which increases to a micromolar-binding
affinity in bivalent molecules (Table III, entry ] 5). When the Pk trisaccharides are tethered to
a multivalent scaffold designed to engage all the binding sites of the toxin, such as the
Starfishs and Daisys ligands (Table III, entry ] 17) developed in seminal studies by Bundle
and co-workers, subnanomolar affinities can be obtained.127 It is important to note that the
design of the dendrimeric scaffold is crucial to achieving high affinities, as some of the silane-
based dendrimers (Table III, entries 13–15) exhibit lower binding affinities when compared to
the Starfishs ligand. Alternatives to the dendrimer scaffolds are polymeric constructs, where
the Pk trisaccharides are dangling from the main branch of the polymer (Table III, entries
6–12). Several of these polymeric molecules are depicted in Table III, and glycans with
appropriate spacers conforming to the binding sites also exhibit subnanomolar binding af-
finities toward Stx. More recently, an in vivo supramolecular templating strategy has been
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used to design high-affinity ligands leading to effective neutralization of Stx in animal
models.148 This strategy involves the use of an endogenous HuSAP protein, a homopentamer
with a structure similar to the Stx B-pentamer, which binds to pyruvate acetals of glycerol.

Figure 3. (A) Side viewof ribbondiagramof Stx1and Stx2.The enzymaticallyactive A-subunit is shown in green.The binding

or B-subunit is a pentamerof five identical subunits, each displayed in a different color in this representation.The receptor binding

domains are on the bottom of the B-pentamer
214,215

(PDB ID: Stx1-1DM0, Stx2 -1R4Q). (B) Top view representation of Stx1homo-

pentamer.The structures were downloaded from NCBI and the figures were generated using Pymol
s
software (PDB ID: 1BOS).

216

Figure has beenadapted with permission from reference (Publisher: Wiley Interscience).
217
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A heterobivalent molecule possessing the receptors of Stx and HuSAP results in the for-
mation of a ternary sandwich type complex (Table III, entry 19).142 When this preorganized
heterobivalent molecule is tethered to a polymer, the binding affinity for Stx increases dra-
matically as the HuSAP organizes the Pk saccharide for optimal binding to Stx (Table III,
entry 10).148

B. Shiga Toxin Variants Exhibit Different Glycan Preferences

Stx2 shares 56% amino acid homology with Stx1, but is more potent than Stx1. In a murine
model of disease, the lethal dose for Stx1 has been reported to be about 1.2 mg, while Stx2 is
600 times more toxic, with a lethal dose of about 2 ng.149 Studies using a baboon model have
shown that administration of purified Stx2 leads to development of HUS, while an equivalent
dose of Stx1 does not.60 Similarly, clinical epidemiological studies suggest that Stx2 is more
toxic to humans.62 In addition, emerging variants, such as Stx2b–e, which may differ from
Stx2 by less than a dozen amino acids, are receiving considerable attention because some of
these variants appear to be more potent than Stx2, while others are less toxic to humans.

Potency differences between the various forms of Stx appear to be associated with
receptor-binding differences.150–153 This is most clearly demonstrated for Stx2e which is toxic
to pigs, but not to humans. Unlike the other forms of Stx, Stx2e uses Gb4 as a receptor
instead of Gb3.154 Recently, we have demonstrated that introduction of small changes in the
structure of Pk saccharides can lead to dramatic differences in the binding affinities between
Stx1 and Stx2.155 Specifically, analogues with N-acetylated galactose residues of Pk tri-
saccharide (Fig. 4B), attached to a solid surface via biotin–streptavidin conjugation chem-
istry, captured Stx2 specifically, but not Stx1 (Fig. 5A). Interestingly, Pk trisaccharides, when
attached to the same framework, bound very well to Stx1, but not to Stx2 (Fig. 5B).8 It is
worth mentioning that contrasting results regarding the interaction of Stx2 with Pk tri-
saccharide have been reported; while some studies133 (including our own work155) indicate
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that Stx2 does not bind to Pk saccharide, other studies indicate the opposite.144 Careful ex-
amination of the contrasting reports suggests that binding of Stx2 to Pk saccharide is highly
dependent on the spacer length, presentation, and assay conditions. This particular example
underscores the complexity involved in understanding the ‘‘glycocode’’ Stx1 binds to Pk sac-
charides attached to a variety of platforms; however, Stx2 is more discriminatory. Nonetheless,
the studies shown in Figure 5C, D are proof of principal for the use of synthetic tailored glycans
to capture toxins from complex matrices and to differentiate between emerging variants.8

5. INFLUENZA VIRUS

Perhaps the greatest impact of the eavesdropping on the conversation between carbohydrates
and pathogens has been in influenza virus research. Currently, only time separates us from
the highly pathogenic strains of influenza that are expected to eventually develop a me-
chanism to transmit directly between humans. From a public health perspective, under-
standing this language has taken on a new urgency because recent reports indicate that the
highly pathogenic strains of avian flu are becoming resistant to antiviral drugs.156–159

There are three types of influenza viruses, A, B, and C. Of these, influenza A and B are
more pathogenic for humans than C, with A being the most virulent. Highly pathogenic
influenza A has received the most attention. Of the ten proteins produced by influenza A,160

the glycan-binding protein, HA, and the sialic acid cleaving enzyme, NA, mediate infection
and transmission. They play a major role in determining disease outcome due to their role
in mediating host immunity, transmissibility (including species and tissue specificity), and
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Figure 5. (A,B) Differential binding of Shiga toxin variants to synthetic glycans. (C) Ability of GC-2 to capture Stx1 in human

stool. (D) Differential binding to GC-1. Figure has been adapted with permission from reference (Publisher: Wiley Interscience).
218

[Color figure canbe viewed in the online issue, which is available at www.interscience.wiley.com.]
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resistance to antiviral agents. These glycoproteins exist as trimers (HA) or tetramers (NA) on
the surface of the influenza virus (Fig. 6). HA mediates viral binding to the host cell and
promotes viral entry. NA enzymatically removes the terminal a-linked sialic acids present on
glycolipids and glycoproteins, allowing the viral progeny to escape from the surface of the
infected host cell. NA also cleaves a sialic acids, present on mucins and other natural in-
hibitors of influenza virus, to allow the virus to move along the respiratory tract. There are 16
known HA subtypes and 9 known NA subtypes of influenza A, forming various possible
combinations, such as H1N1, H3N2, H5N1, and H7N7. These subtyping schemes were
originally developed using antibody panels. Antibody tests are still used to assign the H and

A . HA

B . NA 

Figure 6. (A) Topviewof ribbondiagramofHA trimercomplexedwith sialicaciddepictingdistancebetweenthebindingsite of

each trimer (PDB ID: 1HGD).
219

(B) Top view of ribbon diagram of NA tetramer complexed with sialic acid depicting distance be-

tween the binding site of each tetramer. (PDB ID : 2HU0).
220

The structures were downloaded from NCBI and the figures were

generated using Pymol
s
.
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N subtypes, but PCR techniques have been developed to detect the relevant genomic changes
associated with each serotype. It is important to note that the H and N typing systems reflect
viral immunogenicity, and provide useful information regarding host immunity and vaccine
development. However, the HA and NA typing system itself does not provide information on
glycan-binding preferences, and provides little information regarding species and cell type
susceptibility, transmissibility, or pathogenic potential.

A. Host Immunity

Seasonal influenza accounts for approximately 200,000 hospitalizations and 36,000 deaths
per annum in the United States. Seniors (over 65 years), children, and individuals with
chronic health conditions bear the severe disease cases.161 The impact of seasonal influenza is
influenced by the presence of immune and partially immune individuals in the population.
These individuals limit transmission of the virus and, ultimately, the magnitude and duration
of the influenza season. The ability of immune individuals in a population to block trans-
mission to susceptible individuals is called herd immunity. Influenza pandemics are more
devastating than seasonal illness. Pandemic influenza occur when the virus acquires surface
determinants, HA and NA, which are entirely new to the human population. When this
happens, all individuals are fully susceptible to infection and the protective effect from
herd immunity is lost. The new genes for HA and NA are acquired when human strains
recombine with animal viruses, usually birds (avian influenza) or pigs (swine influenza).
Pandemic outbreaks associated with H1N1 (Spanish, 1918), H2N2 (Asian, 1957), and H3N2
(Hong Kong, 1968), antigenic determinants of influenza A, were catastrophic.

B. Transmissibility and Pathogenicity

Viral transmissibility and pathogenic potential vary independently. Occasionally highly
transmissible viruses are extremely virulent. The 1918 pandemic strain was notable for an
especially high mortality rate, which was unusual in that young healthy adults were parti-
cularly susceptible. The high pathogenicity of the 1918 virus has been attributed to its ability
to cause damage to the lungs.163 In the spring of 2009, a new H1N1 strain with pandemic
potential emerged.164–166 This strain reportedly originated from a swine influenza source.
This particular strain seems to be highly transmissible with a level 5 pandemic rating by the
World Health Organization (WHO). The phase 5 level is characterized by human-to-human
viral transmission in at least two countries and a strong indicator that a pandemic is im-
minent. At the time of writing this article, this strain remains sensitive to antiviral agents and
does not seem to be as virulent as the 1918 influenza strain; however, as this viral strain
continues to evolve, it might become more virulent.

In addition to possessing a new HA and NA combination, pandemic viruses must also be
easily transmissible between humans. Some new viral forms, with pandemic potential, lack
the ability to be easily transferred between human hosts. H5N1, also known as avian flu,
primarily infects wild birds and only occasionally infects humans. Avian influenza strains are
further classified as low or highly pathogenic. An emerging, highly pathogenic variant of the
H5N1 avian influenza virus is raising concern. As of January 24, 2009, the WHO reports that
399 cases of H5N1 have been confirmed; of these, 252 have died, resulting in an extremely
high mortality rate of 63%. However, the current variants were acquired following close
contact with birds, and human-to-human transmission has not yet occurred. Newer strains
are exhibiting increased drug resistance. A drug resistant form of this highly pathogenic virus
would be very dangerous, if it acquired the ability to be easily transferred between human
hosts.

GLYCAN-BASEDHIGH-AFFINITYLIGANDS K 359

Medicinal Research Reviews DOI 10.1002/med



C. Strategies to Prevent Infection

Vaccines, antivirals, diagnostics, and public health measures, such as isolation and quar-
antines, are the primary tools in the fight against influenza.167 Vaccines are the mainstay
against seasonal influenza; however, they cannot be developed quickly enough to prevent the
first wave of infection by emerging strains. Antivirals are important for treating infected
individuals and preventing death, especially in vulnerable populations, but have limited
potential to prevent viral spread. Point-of-care diagnostics are probably the most important
tool to prevent spread of new strains. Rapid diagnosis is important for identifying where
cases of disease have emerged and which patients should be isolated. The need for diagnostics
was illustrated in the recent severe acute respiratory syndrome (SARS) crisis. Lack of di-
agnostic tools hampered public health authorities in their efforts to rapidly identify and
isolate infected patients.168,169

D. Influenza Virus Exhibits Different Glycan Receptor Specificities

Glycan receptor specificity has a major role in determining species and tissue specificity and
transmissibility. Influenza types A, B, and C all use sialic acid as a receptor to gain cellular
access (Table IB, entries 6–8); however, minute structural differences in the sialic acid re-
sidues are employed by influenza strains to achieve high selectivity, including tissue and host
specificity. Efforts to identify glycan preferences of these strains have yielded considerable
success, especially for type B and C.

Seminal studies conducted by Paulson and co-workers170,171 have shown that influenza C
binds specifically to a receptor, 9-O-acetyl-N-acetylneuraminic acid (9-O-Ac-Neu5Ac).
Briefly, human asialoerythrocytes were resialylated to contain either canonical sialic acid
(Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), or 9-O-Ac-Neu5Ac, using purified sialyl-
transferases and appropriate substrates. Influenza C virus agglutinated only those cells ex-
hibiting 9-O-Ac-Neu5Ac on their surface and failed to agglutinate native cells or resialylated
cells containing Neu5Ac and Neu5Gc. Removal of 9-O-Ac-Neu5Ac from the surface resulted
in loss of agglutination. These experiments identified 9-O-Ac-Neu5Ac as a high-affinity
receptor for influenza C.

In contrast to influenza C, identification of high-affinity receptors for influenza A sub-
types has been difficult, because receptor recognition by these influenza subtypes is more
subtle. However, A and B can be differentiated from each other. A competitive binding assay
has been used to evaluate the affinities of the receptor-binding sites of influenza A and B
(Table IV).172–176 Subtle differences at the 2 position of the lactose/lactose amine make
important contributions to the binding affinities. These experiments indicate that, in addition
to the Neu5Ac moiety, the composition, structure, and orientation of the internal sugars in a
sialyloligosaccharide contribute significantly to the recognition event.172,173,177–179

Table IV. Differences in Glycan-Binding Affinities of Influenza A and B172

Dissociation constant, Kd (1� 10�3M)

Structure of glycans Influenza A (A/USSR/90/77) Influenza B (B/USSR/100/83)

Neu5Aca(2,3)Galb(1,4)Glc 0.3 0.11

Neu5Aca(2,3)Galb(1,4)GlcNAc 0.3 0.07

Neu5Aca(2,6)Galb(1,4)Glc 1.5 0.3

Neu5Aca(2,6)Galb(1,4)GlcNAc 0.1 0.3
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The glycan-binding preferences of avian and human influenza A have been compared in
recent studies. In general, avian influenza binds to Neu5Ac attached to the 3 position of
galactose, while human influenza prefers Neu5Ac attached to the 6 position of galactose
(Fig. 6). Using cultures of differentiated human airway epithelial cells, Matrosovich et al.180

demonstrated that human influenza preferentially infected nonciliated cells bearing terminal
Neu5Aca2,6Gal sugars. On the contrary, avian viruses infected ciliated cells bearing terminal
Neu5Aca2,3Gal sugars. The authors conclude that infection of ciliated cells must be sub-
optimal for viral replication and/or transmission in humans. These results are substantiated
by observations that most human cases of avian flu have been documented to originate from
infected bird contact (or in some cases, very close contact to infected humans). Avian viruses
must acquire mutations in their HA proteins and switch receptor specificity from a2,3 to a2,6
linkage, in order to efficiently infect humans.181,182

E. Glycan Preferences of Hemagglutinin

Immunogold labeling of several influenza strains, treated with antibody to HA or NA, has
revealed an estimated 50 copies of tetrameric NA and in excess of 300 copies of trimeric HA
on the surface of an influenza viral particle.183–185 Interestingly, HA is evenly distributed on
the surface. In contrast, NA is present in clusters on one or more sites. The abundance of HA
and NA on the viral surface makes these proteins an ideal target for anti-adhesive therapies.
HA and NA (Fig. 7) recognize specific N-acetyl neuraminic (Neu5Ac or sialic) acid residues
on termini of glycoproteins and glycolipids of the host cell.

Single crystal X-ray structures of all HAs reveal that they are very similar, with a
globular domain at the apex that contains the receptor binding site, an esterase domain and a
membrane proximal domain. Each HA monomer has one carbohydrate-binding site and
binds to a single N-acetyl neuraminic acid with millimolar affinity. Three structural elements,
namely the 130 loop, the 220 loop, and the 190-helix make up the relatively shallow binding
pocket. The amino acids in these structural elements, the 134–138 (130 loop), 221–228 (220
loop), and 188–190 (190 a-helix) of HA1 (the C-terminus parent HA0) are generally con-
served among all HAs with some differences in the amino acids. Changes in one or more
amino acids at the receptor-binding site of HA lead to significant differences in glycan-
binding affinities. Efforts to characterize minute differences in the glycan structures that
specifically bind to different HA variants have used various techniques, including glycan
microarray analysis, X-ray crystal structures, and biochemical analysis.41,42,179,186–189 The
glycans from the glycan microarray, developed by the Consortium for Functional Glycomics,
possess Neu5Ac in a variety of linkages that include a2,3, a2,6, and a2–8 linkages. A simple
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sandwich immunoassay using recombinant HAs and fluorescent reporter antibodies were
used to assess binding. Not all human HAs have identical preferences. Some H3 HAs bind to
a2,3- and a2,6-linked sialosides, but no clear correlation with the inner sugar residues were
observed. Two avian HAs, H5 (A/Vietnam/1203/2004) and H3 (A/Duck/Ukraine/1/1963),
exhibited preferences to a2,3 sialosides, and a more detailed analysis revealed that the H5
binds to fucosylated glycans while H3 does not. Insights into the molecular details of binding
were determined in a comparative study by Stevens et al.,186 who demonstrated that a single
amino acid mutation can lead to different HA binding preference. Specifically, a single amino
acid residue change at position 225 from Asp (A/South Carolina/1/1918) to Gly (A/New
York/1/1918) switched the HA preference from exclusively a2,6-linked sialosides to mixed
specificity for both a2,6 and a2,3-linked sialosides. HA (A/New York/1/1918) was also
bound to sulfated glycans. The smaller size of Gly225 is thought to allow the glycan to orient,
so that the negatively charged sulfate group on the GlcNAc of Neu5Aca2,6Galb1,4GlcNAc
can form favorable hydrogen bonds with Lys222; thus, as the binding pocket opens up, the
glycan can bind with a different orientation.

Attempts to correlate these in vitro HA binding studies to in vivo biological function have
been performed. In a ferret model, two distinct H1N1 viruses (A/New York/1/18 and
A/Texas/36/1991) exhibit mixed a2,3/a2,6 receptor specificity; however, only the Texas strain
transmits effectively.181 Sasisekaran et al. used a combination of data mining from the glycan
microarray studies, molecular modeling, biochemical analysis, and examination of X-ray
structures to show that the differences in transmission are due to glycan presentation.9,190

In addition to a2,6 structural requirement, ‘‘long’’ a2,6 glycans with an ‘‘umbrella-like’’
topology promote transmission, whereas ‘‘short’’ a2,6 glycans that adopt a ‘‘cone-like’’
topology hinder transmission (Fig. 8). These findings underscore the complexity involved in
developing synthetic receptor mimics; in addition to the synthesis of the correct glycan, how
the glycan is presented to the cognate receptor determines the binding affinities.

Unfortunately, studies examining NA binding preferences have been limited. Current
glycan microarrays are comprised mainly of naturally occurring O-sialosides, which can be
cleaved from the surface by the action of NA. Efforts to screen the microarray in the presence
of NA inhibitors and/or lowering the temperature to inhibit the cleavage activity are being
attempted.

Overall, the factors that mediate glycan–HA specificity beyond broad preferences of
avian and human HA, preferring a 2,3 versus a 2,6 linkages, are yet to be determined. Studies
on glycan–NA and glycan—virus-binding preferences are limited due to the lack of molecules
that are impervious to the action of NA. Correlation of the binding preferences of sialic acids

O

O

O
O

O

Figure 8. Topologies adopted by a 2,6 glycans. Left: ‘‘Short’’ a 2,6 glycans adopt a ‘‘cone-like’’ topology, which hinders facile

transmission.Right: ‘‘Long’’ a 2,6 glycans adopt a ‘‘umbrella-like’’ topology, which seems to have a more propensity toward trans-

mission. Figure has beenadapted with permission from reference. (Publisher:Macmillan Publishers Ltd.)
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with HA, NA, and intact viruses is important, because it has recently been shown that certain
strains of influenza exhibit decreased NA activity which might increase the virulence of these
strains. Also, antivirals, such as Relenzas, which currently inhibits all influenza strains,
might become ineffective against strains that exhibit decreased NA activity.

F. High-Affinity Ligands as Antiviral Agents for Influenza Virus

Several antiviral agents have been developed for treatment of influenza. The first antiviral,
Amantadines, targets the viral protein, M2, an ion channel which is required for viral
uncoating. Recent efforts to inhibit the action of NA have achieved considerable success
(Fig. 9) and resulted in commercial antivirals, including Relenzas (Zanamivir), which is an
inhaled medication, and Tamiflus (Oseltamivir phosphate), which can be taken orally.156–159

These molecules resemble the transition state of the cleavage reaction of NA and bind
effectively to the pathogen, but are not released from the enzyme. The molecules inhibit the
action of all NAs, despite distinct differences in the structure of different NAs. Viral isolates
with resistance to Tamiflus have developed. The resistant mutants have changes in a key
amino acid, Glu276, present at the active site.159 Thus, development of additional glycan
receptor mimics remains an important area of research (Tables V and VI).

The rational design and development of synthetic high-affinity ligands for influenza
viruses have focused on two areas, small molecule inhibitors and multivalent displays of sialic
acids that could act as competitive inhibitors. Both HA and NA are being targeted. The small
molecule inhibitors include N-, C- or S-linked sialic acids that are impervious to the action of
viral NA.191–195 Wong et al. recently demonstrated that a fluorinated sialic acid derivative
inhibits the activity of HA and NA.196,197

Compared to the monomeric small molecule inhibitors, multivalent displays of sialic acid
exhibit increased neutralization because of their ability to engage multiple binding sites on
the virus and their ability to target both glycoproteins. As in the case of Stxs, optimally
tailored sialosides have been demonstrated to inhibit the virus better than random polymers.
Examples include bi,198 tri,199 tetra,200 or polyvalent201 displays with sialic acid derivatives.
As the number of sialic acid residues increases, the binding affinity increases. In addition to
density, binding is highly dependent on the architecture of the display. Whitesides et al.202–204
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Figure 9. Structures of influenza inhibitors (A) Tamiflu
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(Oseltamivir), the orally available NA inhibitor. (B) Relenza
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(Zanamivir), the inhaled NA inhibitor.
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and Baker et al.201 have demonstrated that effective inhibition of the virus using polymeric
systems is highly dependent on structure, density, and spacer lengths.

6. PRACTICAL APPLICATIONS OF GLYCANS

While the interactions between glycans and infectious agents can be challenging to study,
once the glycan receptor is identified, further development into a therapeutic is extremely
promising, as this class of compounds offers a suitable alternative to antibiotics or antivirals.
Indeed, Nature uses this approach; soluble glycans, such as human milk oligosaccharides and
mucins, capture and aid in removal of microbes.205–209 Glycan-based drugs act as competitive
inhibitors for the cellular receptor, arresting and eliminating the microbe in a no-kill man-
ner.210 Microbes may be less prone to develop resistance to this class of molecules, because in
many cases glycan binding plays an intrinsic part in its pathogenic strategy. While the amino
acid sequence of the carbohydrate-binding sites can change, function must be preserved;
consequently, carbohydrate-based drugs may suffer less from phenotypic and genotypic
drifts than vaccine and monoclonal antibody-based therapies. Currently, there are only a
handful of glycan-based therapeutics approved by the FDA; however, several anti-infectives
for a variety of infectious diseases are being developed.211

Glycans receptor mimics could be developed as capture ligands in diagnostics, and are
not expected to be plagued by some of the problems associated with antibody-based diag-
nostics.212 Often, it is not possible to distinguish between closely related toxins or microbes
with very different pathogenic potential using polyclonal antisera, and a single amino acid
change can compromise monoclonal antibody binding. As presented earlier, Stx variants,
Stx1 and Stx2, share 56% amino acid identity, but differ in potency by 100- to 1,000-fold,
and the difference in potency is likely due to binding differences.61 While monoclonal anti-
bodies can distinguish between the toxins, single amino acid mutations could alter mono-
clonal antibody recognition and thus eliminate detection. However, mutations that alter
receptor recognition would always be accompanied by a change in potency. Thus, diagnostics
based on glycan recognition are intimately tied to the biology of the toxin or pathogen, and
are less susceptible to antigenic variation.23,155 An added advantage of glycans is their ex-
tended shelf life, eliminating the need for refrigeration or freezing, which is attractive for
low resource settings. Thus, understanding the ‘‘glycocode’’ and the subsequent develop-
ment of glycan-based diagnostics and therapeutics offers distinct advantages over existing
approaches.

7. CONCLUSIONS AND FUTURE DIRECTIONS

Glycans have an important but poorly understood role in regulating cellular processes and
maintaining human health. They hold enormous promise for future biomedical advance-
ments, as recent examples have shown the ability of synthetic glycans to mediate regeneration
of nerve cells.213 We have only begun to decipher the ‘‘glycocode’’ and the implications
toward different disease states. The study of glycolipids and glycoproteins targeted by mi-
crobial pathogens provides an important research tool to investigate the basic biology of cell-
surface glycans. Toxins/pathogens bind to different glycans and are also mutating constantly,
leading to a large pool of variants with different glycan-binding preferences and affinities
resulting in different pathogenic potential. Understanding the in vitro interaction of toxins
and pathogens with glycans and correlating the in vitro binding to in vivo biological function
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can lead to development of important therapeutics and diagnostics, and, in addition,
may provide the Rosetta stone to deciphering the language of glycans.
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